
About Minimal Surfaces

Discovery and physical interpretation.

The question which surfaces locally minimize area led La-
grange in 1760 to the minimal surface equation for graphs.
By 1765 Meusnier had found that a geometric interpreta-
tion of this equation is: the mean curvature of the surface
vanishes. He discovered that the catenoid and the heli-
coid are nonplanar examples. It took until 1835 for the
next examples to appear, discovered by Scherk; his dou-
bly periodic surface is a graph over the black squares of a
checkerboard tesselation of the plane and his singly peri-
odic surface is nowadays viewed as a desingularization of
two orthogonally intersecting planes. In the following years
complex analysis developed and by 1865 many examples
were known through the efforts of Riemann, Weierstraß,
Enneper and in particular Schwarz.

Also in that period Plateau had made careful experiments
with soap films. He convinced people that soap films were
a perfect physical realization of minimal surfaces, and he
convinced mathematicians that they should solve Plateau’s
Problem, i.e. prove that every continuous injective closed
curve in R3 spans a minimal surface. This problem was
solved in 1932 by Douglas and independently by Rado.
On the way to this solution mathematicians had learnt a
lot about nonlinear elliptic partial differential equations.
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In particular the importance of the maximum principle
had become clear, it implies for example that every com-
pact minimal surface is contained in the convex hull of
its boundary and that boundary value problems are well
posed for the minimal surface equation.

On the other hand, although the Cauchy-Kowalewski the-
orem allows to solve locally initial value problems with
analytic data, there is no continuous dependence on the
data and no hope to obtain complete immersed examples
with this method. — But, already Weierstraß had estab-
lished the close connection of minimal surfaces with com-
plex analysis. In particular: the spherical Gauss map com-
posed with stereographic projection is locally a holomor-
phic function G : M2 → C. In terms of the 90◦ rotation
of each tangent space of the minimal surface M2 holomor-
phicity has the following intuitive interpretation: for each
v ∈ TM2 we have the following version of the Cauchy-
Riemann equations

dG(R90 ◦ v) = i · dG(v).

Moreover, the three component functions of the immersion
(F 1, F 2, F 3) : M2 → R3 are, locally, the real parts of
holomorphic functions because the differential forms ωj :=
−dF j ◦ R90 are closed for surfaces with mean curvature
zero (Meusnier’s above interpretation of “minimal”). This
fact establishes the Weierstraß representation:

Let G be the holomorphic Gauss map and dh :=
dF 3 − i · dF 3 ◦ R90 the (holomorphic) complex-
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ification of the differential of the height function
F 3 then

(F 1, F 2, F 3) = Re
Z µ

1
2
(
1
G
−G),

i

2
(
1
G

+ G), 1
∂

dh.

The examples of the second half of the 19th century were
made with this representation. But results, achieved by
1960 by Huber and Osserman show, that all minimal sur-
faces of a certain kind can be obtained by a global appli-
cation of this representation, namely:
Complete, immersed minimal surfaces of finite total cur-
vature can be conformally compactified by closing finitely
many punctures; moreover, the Weierstraß data G, dh
extend meromorphically to this compact Riemann sur-
face.

The wealth of examples, discovered since about 1980, rely
on this theorem. To understand these examples better we
note the first and second fundamental forms (Riemannian
metric and, if |v| = 1, normal curvature)

I(v, v) =
1
4
(

1
|G| + |G|)2|dh(v)|2

II(v, v) = Re
dG(v)

G
dh(v).

The points p on the Riemann surface which are poles of dh
do not correspond to points on the minimal surface. Every
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(differentiable) curve which runs into such a puncture p has
infinite length on the minimal surface. The same is true
if G has a zero or pole of higher order than the vanishing
order of dh. If these orders are the same then we simply
have a point with vertical normal on the minimal surface.
And at points where the vanishing order of dh is larger,
the metric becomes singular and the minimal surface has
a so called branch point, it is no longer an immersion.

Visualization of minimal surfaces.

The Weierstraß representation allows to write down a num-
ber of simple minimal surfaces which can be visualized like
any other surface for which an explicit parametrization is
given. Our parameter lines come from polar coordinates
with centers {0,1} or {1,+1}. Note that the zeros and
poles of G, dh fit together so that no branch points oc-
cur and so that the minimal surfaces are complete on the
punctured spheres mentioned in each case. The surfaces
are of finite total curvature, since the Gauss map is mero-
morphic, i.e., its image covers the Riemann sphere a finite
number of times.
First Examples,

defined on C or C \ {0} or S2 \ {1,−1}:

Enneper Surface:
z ∈ C, G(z) := z, dh := zdz

Polynomial Enneper:
z ∈ C, G(z) := P (z), dh := P (z)dz
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Rational Enneper:
z ∈ C, G(z) := P (z)/Q(z), dh := P (z)Q(z)dz

P and Q are polynomials without common zeros.
Vertical Catenoid:

z ∈ C \ {0}, G(z) := z, dh := dz/z,

or G(z) := 1/z

Helicoid:

z ∈ C, G(z) := exp(z), dh := idz = i
dG

G
Helicoid:

z ∈ C \ {0}, G(z) := z, dh := idz/z

Planar to Enneper:
z ∈ C \ {0}, G(z) := zk+1, dh := zk−1dz

Wavy Catenoid:
z ∈ C \ {0}, G(z) := (1 + ≤ · zk)/z, dh := G(z)dz

Wavy Plane:
z ∈ C \ {0}, G(z) := z, dh := dz

Horizontal Catenoid:

z ∈ S2 \ {1,−1}, G(z) := z, dh :=
dz/z

(z − 1/z)2
.
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All of these simple minimal surfaces have symmetries: (i)
straight lines on a minimal surface allow 180◦ rotations of
the minimal surface into itsself, and (ii) planar geodesics
on a minimal surface allow reflection (in the plane of the
geodesic) of the minimal surface into itsself. Since these
symmetries become more important for understanding more
complicated surfaces one should learn how to recognize
them. The straight lines are geodesics with normal curva-
ture II(c0, c0) = 0 or dG(c0)/G·dh(c0) ∈ i·R. In the present
context we recognize geodesics as fixed point sets of isomet-
ric involutions. The formula for the first fundamental form
is so simple that one can easily see in all of these examples
that the expected symmetry indeed does not change the
Riemannian arc length of curves. To recognize the planar
geodesics note that a geodesic on a surface is planar if it
is also a principal curvature line; in addition to seeing it
as the fixed point set of a length preserving involution we
therefore only need to check dG(c0)/G · dh(c0) ∈ R, which
is also easy in these examples.
In 3D-XplorMath one can easily change (in the Settings
Menu) the range of the parametrization and also the sym-
metry of the surface. We recommend that the surfaces
are looked at from far away when a large range for the
parametrization is chosen. We also recommend to look at
the default morphs of WavyEnneper and WavyCatenoid
since it is quite surprising how suddenly the perturbation
becomes visible. This should be taken as an illustration
that the initial value problem for minimal surfaces is highly
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unstable, it is ill posed and no numerical solution is possi-
ble.

More complicated spherical examples.

The sudden increase of the interest in minimal surfaces
after 1980 was largely caused by the discovery of a quite
unexpected embedded finite total curvature minimal sur-
face by Costa with embeddedness discovered and proved by
Hoffman-Meeks. We are not yet close to such an example
because of the following

Theorem of Lopez-Ros. An embedded, minimal, finite total
curvature punctured sphere is a plane or a catenoid.

To practise using the Weierstraß representation we there-
fore have to be content with a few immersed punctured
spheres. We want to learn how to see the Gauss map when
one looks at the picture of such a minimal surface. The
main fact to use is: a meromorphic function on a compact
Riemann surface is determined up to a constant factor by
its zeros and poles. In the case of the Jorge-Meeks k-noids
one clearly sees a k-punctured sphere with a horizontal
symmetry plane. One observes only two points with verti-
cal normal, one up, one down. The qualitative behaviour
of the Gauss map along the horizontal symmetry line sug-
gests a mapping degree k − 1. This leaves no choice but
G(z) = zk−1. If we look back at the very simple exam-
ples then we can observe that, at a catenoid like puncture,
either Gdh or dh/G has precisely a double pole. This de-
termines the dh below up to a constant factor.
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The next two examples, the 4-noid with orthogonal ends of
different size, and the double Enneper, have a quite differ-
ent appearance, but they have the same Gauss map. The
vertical points are symmetric with respect to the origin and
symmetric with respect to the unit circle, and the degree of
the Gauss map is three; this determines the Blaschke prod-
uct expression below. In the case of the 4-noid we need to
create the four catenoid ends with double poles of dh and
we need to compensate the simple zeros and poles of G by
simple zeros of dh; then, if we also treat zero and infinity
symmetrically, the expression below is forced. In the case
of the double Enneper surface we just need to compensate
the simple zeros and poles of G (outside 0,1); symmetric
treatment of 0,1 gives the dh below (except for a constant
factor).
The last example illustrates in which way attempted counter
examples to the Lopez-Ros theorem fail. A residue com-
putation for the Weierstraß integrands shows that closed
curves around the punctures ±1 on the sphere are not
closed curves on the minimal surface, if we want all limit
normals to be vertical. It is easy to close this so called
period when one allows tilted catenoid ends, but, as one
decreases the tilt, the distance between the half catenoids
increases, and they intersect the planar middle end if one
computes the surface far enough towards the punctures.
The k-noids of Jorge-Meeks:

z ∈ S2 \ {e2πi·l/k; 0 ≤ l < k},
G(z) := zk−1, dh := (zk + z−k − 2)−1 · dz/z.
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4-noids with two different orthogonal ends:
z ∈ C \ {0,−1,+1}, G(z) := z · z−r

1−rz · z+r
1+rz ,

dh :=
≥
1− z2+z−2

r2+r−2

¥
· (z2 − z−2)−2 · dz/z.

Two Enneper ends joined by a catenoidal neck:
z ∈ C \ {0},

G(z) := z · z−r
1−rz · z+r

1+rz , dh :=
≥
1− z2+z−2

r2+r−2

¥
· dz/z.

Three punctures, period closes for tilted ends:
z ∈ C \ {−1,+1},
G(z) := ρ(z2 − r2), dh := z2−r2

(z2−1)2 dz.

Observe that the zeros and poles of the Gauss map which
are not in the list of punctures are compensated by zeros
of dh. At the embedded ends, Gdh or dh/G have a dou-
ble pole and at the Enneper ends they have higher order
poles. — In this list we do not have simple poles of Gdh
and dh/G. If this happens then the Weierstraß integral
behaves similar to

R
dz/z: the unit disk, punctured at 0,

is mapped by log to an infinite number of half strips par-
allel to the negative real axis and of width 2π. Similarly,
the Weierstraß integral produces simply periodic embedded
minimal surfaces parametrized by punctured spheres.

Generalized Scherk Saddle Towers:
z ∈ S2 \ {e±φ · e2πi·l/k; 0 ≤ l < k},
G(z) := zk−1, dh := (zk + z−k − 2 cos kφ)−1 · dz/z.
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As in the simpler examples, observe that the symmetry
lines can be seen from the Weierstraß data. We also note
that at this point an important decision has to be made. If
one represents the surfaces, as in all our examples, with pa-
rameter lines then each surface requires a special effort so
that the parameter lines on the one hand support the com-
plex analytic background of the minimal surface and on the
other hand suggest correctly how one should imagine how
the surface extends beyond what the picture shows. In 3D-
XplorMath this individual approach has been taken. The
other option is to spend considerably more general effort
by writing software which will create a suitable triangu-
lation of the domain. David and Jim Hoffman have such
a program running. It requires much less individual work
to compute another minimal surface but it is harder to il-
lustrate the complex analysis background of the computed
minimal surface.

The family of singly periodic embedded minimal surfaces
which resemble the above generalized Scherk Saddle towers
is much larger than the above explicit formulas suggest. So
far we have only talked about the real part of the Weier-
straß integral. In fact, a 1-parameter (“associate”) family
of isometric (and in general not congruent) minimal sur-
faces are given by this integral because dh can be changed
by the factor exp(−2πiϕ). In particular, the imaginary
part of the Weierstraß integral is the “conjugate” minimal
surface. In the case of the generalized Scherk saddle towers
we have that the conjugate minimal immersion maps the
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unit disk (with the punctures on the boundary) to a graph
over a convex polygon; its edge lengths all agree. The min-
imal graph has over each edge the boundary value +1 or
−1, alternatingly. — Jenkins-Serrin proved the converse:
every such infinite boundary value problem has a graph
solution, a minimal disk whose conjugate minimal surface
is the fundamental piece of an embedded singly periodic
saddle tower.

Having seen a good collection of minimal surfaces paramet-
rized by punctured spheres we now turn to minimal sur-
faces parametrized by other Riemann surfaces.

H.K.
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Half-Catenoids and Weierstrass’ Representation

In this text we try to explain, starting from scratch, mini-
mal surfaces parametrized by tori.
We assume from complex analysis roughly the following:
The complex logarithm, log(z), is a multivalued function
with derivative log0(z) = 1/z. One can compute the log-
arithm by integrating the differential form dz/z along a
curve c : [0, 1] 7→ C with c(0) = 1, c(1) = z:

log(z) :=
Z

c

1
≥
d≥ :=

Z 1

0

c0(t)
c(t)

dt

Of course, the integration path c has to avoid 0. There-
fore one can reach z from 1 in many ways. A basic prop-
erty of such complex line integrals is that their value does
not change if the path is deformed, but with fixed end-
points. Two paths which wind around 0 a different number
of times cannot be deformed into each other and, indeed,
the values of the integrals along the two paths differ by
an integer multiple of 2πi. This number, the value of the
integral from 1 once around 0 and back to 1, is called
the period of the differential form dz/z at its singularity 0.
The real part of this integral has no period, we have:
Re (log(z)) = log |z| for all paths from 1 to z.

Instead of integrating one differential form we can integrate
three, so that the real part of such an integral maps (a piece
of) the complex plane into R3. The image is a surface
without singularities if the integrand is never (0, 0, 0). If
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the integrand has singularities, the integration path has to
avoid them and there may be periods. This means that
the integral gives us not just one image of its domain, but
a periodic repetition of one image. The obtained surfaces
are in general not minimal surfaces, but one is close to
them.
Weierstrass derived the following representation:

Let D ⊂ C be some domain, g : D 7→ C a holomorphic
function and dh a holomorphic 1-form on D. Then:

Fϕ(z) := Re
µ

eiϕ ·
Z z

∗

°1
2
(1/g − g),

i

2
(1/g + g), 1

¢
dh

∂

maps, for each ϕ, D to a minimal surface piece in R3.
The length of the image of curves c in D can be computed
with the Riemannian metric:

ds =
1
2
°
|g(c(t))| + 1

|g(c(t))|
¢
|dh(c0(t))dt|.

Beyond the metric we do not discuss the differential geom-
etry here. See ”About Minimal Surfaces” for a derivation
of the above Weierstrass representation that starts from
the minimal surface definition. Instead we discuss Weier-
strass’ formula.

Since the Riemannian metric does not depend on the pa-
rameter ϕ the above surface pieces are all isometric to each
other (almost never congruent). This is a rare phenomenon
in surface theory. – Zeros of the differential form dh lead to
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zeros of dFϕ. Such singularities are called branch points of
the minimal surface. The Riemannian metric shows that
they can be avoided if the function g has a zero or a pole
of the same order as the zero of dh. See the Henneberg
surface to view branch points.

Stereographic projection between the Gaussian plane C
and the Riemann sphere S2 is an important tool in complex
analysis. Composition of the function g with stereographic
projection is

~N(z) :=
°
2Re (g), 2Im (g), |g|2 − 1

¢
/(|g|2 + 1) ∈ S2.

This vector is orthogonal to the integrand of the Weier-
strass formula and therefore a unit normal vector field of
the surface. The Weierstrass representation is therefore
built from a unit normal field and the differential of the
height function. The functions g, ~N are both called Gauss
map of the surface. – We mention that a surface is minimal
if its Gauss map ~N is anti-conformal. The ’anti’ comes in
because a minimal surface has Gauss curvature K ≤ 0. Of
the two choices for stereographic projection we used the
anticonformal one.

One of the simplest examples, the catenoid and its conju-
gate, the helicoid, are obtained from the following Weier-
strass data:

D := C \ {0}, g(z) = z, dh =
dz

z
.

The 3rd component of the Weierstrass integrand has the
imaginary period of dz/z which we discussed. The first and
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second components have no periods because the singular
terms dz/z2 have the antiderivative −1/z (so that the pe-
riod integrals around the singularity vanish). If we set the
associate family parameter ϕ = 0 we get a surface without
period, a conformal immersion of C \ {0}, the catenoid. If
we set ϕ = π/2 we obtain a surface with vertical trans-
lation period, an immersion of the universal covering of
C \ {0}, the helicoid.
Remark. If one wants to visualize a surface one usually
needs to choose parameter lines. In case of the catenoid:
Only if one chooses polar coordinates around {0,1}, does
the catenoid look familiar. For all other choices one can
hardly recognize it. With the good choice, the parameter
lines are the principal curvature lines. I believe these lines
give the eye the best clues to imagine the surface correctly
in space.

As in the case of the catenoid: Interesting Weierstrass data
have isolated singularities, usually zeros or poles. The fol-
lowing summary helps to find interesting examples:
Poles of dh are never on the surface and lines into the
puncture are infinitely long on the surface.
Zeros of dh have to be canceled by either a zero or else a
pole of g which have the same orders as the zeros of dh.
If a puncture is to be a half-catenoid, then the Gauss map
g must be single valued at the puncture. Furthermore, ei-
ther g · dh or else dh/g must have a double pole (as in the
case of the catenoid).

Let us try to find the Weierstrass data for the following
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picture of a Jorge-Meeks Trinoid.

We have learnt from the catenoid that the huge opening
of a catenoid is conformaly only a puncture, just one point
missing. The picture therefore shows a sphere with three
punctures, say on the equator. With this orientation there
are just two points with vertical normals, one pointing
up, the other down. This implies that the Gauss map
is some power of z. Along the equator we find, for each
half-catenoid, one more normal which points in the same
direction as its limiting normal. The degree of g is there-
fore 2, hence g(z) = const · z2, and |const| = 1 to have
horizontal normals along the equator. Next dh. It needs
double zeros at 0,1 to cancel the double zero and pole of
g and it needs double poles at the third roots of unity to
create the half-catenoids. Since dz/z is, up to sign, invari-
ant under inversion z 7→ 1/z, we write dh as a multiple of
dz/z (which has simple poles at 0,1).
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This gives the Weierstrass data of the trinoid:

g(z) := z2, dh =
z3

(z3 − 1)2
· dz

z

To get good parameter lines, i.e. polar coordinates near the
punctures, we use for one third of the unit disk the grid
shown to the left of the trinoid. Closed parameter lines
(’circles’) in the domain around a puncture are mapped
to closed curves in space since two orthogonal planes of
symmetry cut the space curves into four congruent arcs.

Next let us grow two half-catenoids out of the plane as
follows:

Observe that the limiting normals of the two half-catenoids
point in the same direction, but not quite opposite to the
normal of the plane. On each half-catenoid one can locate
a finite point where the normal is opposite to the normal
of the plane. The Gauss map has two simple zeros at these
points, say at ±1, and a double pole at 1. Therefore we
found g(z) = c · (z − 1)(z + 1). The zeros of g have to be
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canceled by simple zeros of dh and dh needs double poles
at points ±r to create half-catenoids there.
This gives us a 2-parameter family of Weierstrass data:

g(z) := c · (z − 1)(z + 1), dh :=
z2 − 1

(z2 − r2)2
· dz.

In this case there is only one vertical symmetry plane cut-
ting the half-catenoids. Therefore closed curves around the
punctures are not by symmetry mapped to closed curves
in space, a period orthogonal to this plane can occur. The
parameter c can be used to make this period vanish, for
each r > 1. As r approaches 1 the two half-catenoids move
further and further apart. In other words: one cannot grow
two half-catenoids with limiting normals orthogonal to the
plane. The half-catenoids will therefore always intersect
the plane so that all these surfaces are only immersed,
none is embedded.

It is however possible to grow infinitely many equidistant
half catenoids out of the plane such that all these half-
catenoids have the same limiting normal and this nor-
mal is opposite to the normal of the plane. The straight
symmetry line between neighboring half-catenoids – which
was present in the previous example – continues to exist.
Therefore one needs to compute the surface only in a strip
between neighboring symmetry lines.
The Weierstrass data are easy to guess:

g(z) := c · sin(z), dh :=
dz

sin(z)
,
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where c ∈ R controls the size of the half-catenoids rela-
tive to their distance. It is more complicated to get polar
coordinates in a strip. Here is the result:

While sin has in the plane an essential singularity at 1,
in the strip there is convergence. The strip with edges
identified is a cylinder with two half-catenoid punctures
– or a sphere with four punctures, the two half-catenoids
and the two ends of the flat strip. This last point of view
suggests rational Weierstrass data:

g(z) := c · (z − 1/z), dh :=
1

z − 1/z
· dz

z
, c ∈ R.
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Beyond the singly periodic trigonometric functions one has
the doubly periodic meromorphic elliptic functions. ’Dou-
bly periodic’ means that we have two independent transla-
tional symmetries. The group of translational symmetries
is called a lattice Γ in C. Each lattice has a parallelogram
as fundamental domain and identification of opposite edges
makes the parallelogram into a torus. Meromorphic ellip-
tic functions can therefore be viewed as maps from tori to
the Riemann sphere. We visualize an elliptic function (de-
noted J F in 3D-XplorMath)by drawing the preimage on
the torus of the usual polar grid on the Riemann sphere:

The two coordinate centers in the middle are zeros of the
function, the two centers on the (identified) boundary are
poles. The rectangles around the polar centers (made of
symmetry lines of the picture) are preimages of the unit
circle.
If we use this elliptic function in the same way as we used
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the sin-function before:

g(z) := c · J F (z), dh :=
dz

J F (z)
,

then we obtain the following doubly periodic minimal sur-
face:

The picture shows two copies of a fundamental domain for
the translational symmetries. The half-catenoids are at
the zeros of the function J F . At its poles are the zeros
of dh and these cancel the poles of the Gauss map g. In
other words: the poles of J F are points on the surface
with vertical normal. – The parameter lines on the surface
clearly are the image under the Weierstrass integral of the
grid on the torus shown before.
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The Coordinate Viewpoint

The minimal surface just discussed could have been com-
puted in the described way, but it was not. So far we
looked at the torus as a quotient C/Γ and meromorphic
functions on a torus therefore were the same as meromor-
phic functions in C which had the translations τ ∈ Γ as
periods, meaning f(z + τ) = f(z). And the Weierstrass
integral was evaluated on a fundamental parallelogram for
the lattice Γ.
Elliptic functions J : C/Γ 7→ C are, away from their branch
points, locally invertible. They can therefore be viewed as
coordinate functions on the torus. The Weierstrass data
of our doubly periodic surface are given in terms of such
a function J . We also need to express dz in terms of J ,
namely: dz = dJ/J 0. This is almost all what we need, to
perform the Weierstrass integration not on the torus, but
in the range of the coordinate function J , i.e. in C. We still
need to express J 0 in terms of J . The Jacobi-type elliptic
functions which we constructed in ’Symmetries of Elliptic
Functions’ all had four branch values: ±B,±1/B. The two
functions (J 0)2 and (J2−B2) · (J2− 1/B2) have the same
four double zeros and the same two fourth order poles.
Since the domain torus is compact this implies that these
two functions are proportional. We ignore this multiplica-
tive constant because it only determines the scaling-size of
the fundamental domain. Thus we derived the . . .
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Differential Equation for Jacobi-type Elliptic Functions:

J 0(z)2 = P (J) = J4 − (B2 + B−2) · J2 + 1,

J 00(z) = P 0(J)/2 = 2J3 − (B2 + B−2) · J.

And the above Weierstrass data take this form:

g(J) = c · J, dh =
1
J

· dJp
(P (J))

, J ∈ C.

This looks much simpler than before and can be directly
integrated on a standard polar coordinate grid in C. The
remaining problem is the square root. It is a multivalued
function and we have to choose the correct branch. Since
we are doing path integrals along curves which avoid the
branch values (i.e. the zeros of the polynomial P ), such an
analytic continuation of the square root can be built into
the integration routine.

Remark 1. This coordinate view point is a first impor-
tant step towards the theory of Riemann surfaces. While
for tori this view point is only a simplification, it becomes
essential for minimal surfaces parametrized by higher genus
surfaces.
Remark 2. The above differential equation is an ex-
ample where the dominating Runge-Kutta method fails:
If one starts the integration at a zero of P then Runge-
Kutta produces a constant solution. There are 4th order
methods which use J 00 and work fine.
The same is already true for the ODE (sin0)2 = 1− sin2.
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Half-Catenoids with opposite normals
How can one find a Weierstrass representation for this sur-
face?

The surface looks like two catenoids joined by a handle, in
other words: a sphere with four half-catenoid punctures.
We place the surface so that the four limiting normals of
the half-catenoids lie in the horizontal plane and form small
angles ±ϕ with the y-axis. On the handle, and also on the
waist of each catenoid, one sees one point with the normal
pointing vertically up, one point with the normal down.
The gauss map therefore has three zeros and three poles
on the real axis: g(z) = z(z2 − r2)/(1 − r2z2). They are
positioned symmetric to the y-axis and to the unit circle.
The differential dh must have 6 zeros at these points to
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make them into finite points on the surface, and it must
have four double poles on the unit circle to create the hor-
izontal half-catenoids. This gives a 2-parameter family of
Weierstrass data:

g(z) := z
z2 − r2

1− r2z2
,

dh := (1− z2 + z−2

r2 + r−2
)(

z2 + z−2

e2ϕ + e−2ϕ
− 1)−2 dz

z
.

For most choices of parameters the half-catenoid punctures
have vertical periods. A residue computation shows that
these periods vanish if

e2ϕ + e−2ϕ = 2 cos 2ϕ = 4r2/(1 + r4).
Historically this is the first surface that showed David Hoff-
man and me a handle which connected two minimal sur-
faces, deforming them slightly.

If we imagine such handles to grow in two opposite di-
rections out of the waist of the catenoid, then symmetry
would allow the catenoid to stay straight. Therefore we
can think of making a fence of parallel catenoids, joined
by handles. Parallel translation from the symmetry plane
of one handle to the symmetry plane of the next handle
would be a congruence map of this surface. The quotient
by this translation group is a torus with two half-catenoid
punctures whose limiting normals point in opposite direc-
tions. The handle has two points with normals parallel
to the limiting normals of the half-catenoids. The surface
in the following picture therefore has a Gauss map with

27



two zeros and two poles. One zero and one pole are half-
catenoid punctures, the other two are finite points on the
handle.

So first, what kind of a torus is this? There are two types
of tori which have involutive symmetries, the rectangular
tori and the rhombic tori. They are easy to distinguish:
the fixed point set of such an involution of a rectangu-
lar torus has two components, while such involutions of
rhombic tori have fixed point sets with only one compo-
nent. (Note that the interruption of a fixed point set by a
puncture is ignored in this count because the puncture is a
point on the torus, it is only missing on the image minimal
surface.) There are symmetry lines going from the handle
into each puncture: They lie in the same plane and are two
components of the fixed point set of the surface reflection
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in this plane. The parametrizing torus is therefore rect-
angular. Each of the two symmetry arcs joins points with
vertical normals in opposite directions. The following pic-
ture allows to visualize this elliptic function, it is again the
preimage of a standard polar grid on the Riemann sphere.

The left bottom and right top polar centers are zeros of
the function, the other two polar centers are first order
poles. Because of this diagonal arrangement this function
is called J D in ’Symmetries of Elliptic Functions’. The
rectangles which are filled with a polar grid are preimages
of the unit circle. The branch points are the points where
more than 2 parameter lines cross. For rectangular tori,
the branch values are all on the unit circle.
We will make the two top polar centers the punctures, the
two bottom polar centers the finite points with vertical
normals (on the handle). Then the function J F , repre-
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sented by the earlier grid, gives us the second part of the
Weierstrass data:

g(z) := J D(z), dh := J F (z)dz.

As before we can integrate in the range of an elliptic func-
tion of our choice. The functions J D, J F can be com-
puted from each other by solving quadratic equations (D
is the branch value of J D in the first quadrant):

J D +
1

J D
=

D + 1/D

2
(J F +

1
J F

),

(J F )0 = J F · (J D)0(0) ·
µ

1
J D

− J D

∂
,

dz = d(J F )/(J F )0.

(Recall: (J D)0(0) controls the size of the fundamental do-
main.) Again square roots appear and the correct branch
has to be chosen. (For the last surface a more complicated
grid than the standard polar grid on the sphere was used.)

So far we have explained how the Weierstrass representa-
tion works for minimal surfaces which are punctured tori.
But we have not touched an important question. The
Weierstrass representation is well suited to create immer-
sions, and rather many easily. But it requires separate
considerations to decide whether the immersed surface is
without selfintersections, whether it is embedded. For 300
years the plane and the catenoid were the only complete
embedded minimal surfaces (CEMS) which have finite to-
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tal curvature. Finite total curvature means that the nor-
mal Gauss map from the surface to the unit sphere has
finite degree, i.e. there is a number d such that almost
all points of the sphere are hit d times by the gauss map.
Or put differently: that the Gauss map is a meromorphic
function.
Lopez-Ros have proved that the only CEMS of finite total
curvature which are conformally punctured spheres, are the
plane and the catenoid.
R. Schoen has proved that the only CEMS which have
no more infinities than two catenoid punctures are the
catenoids themselves.
There is an obvious attempt to make a torus with two
catenoid ends: Instead of growing handles to the outside -
which created the fence of catenoids above - one can grow
the handles to the inside. It is easy to start with small
handles which are too short to meet in the middle:

The handles end in planar sym-
metry lines which - after trans-
lation! - fit together perfectly.
The only problem is that a
curve, which is closed on the
torus, has a Weierstrass im-
age in R3 that is not closed, it
has a nonzero period. Schoen’s
theorem forbids that one can
make the handles long enough.
So, how does the example fail?
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Things go well for a while: the handle grows and the gap
narrows. But, as one changes the parameter further in the
promising direction, the mouth of the handle becomes very
elongated and the surface starts to look like two catenoids
whose far out portions are connected. Except that the gap
remains no matter how far apart the middle portions of
the two catenoids are pushed. The following picture shows
how close to a counterexample of Schoen’s theorem one
gets, or, what difficulties Schoen’s proof has to overcome.

Failing attempt to grow a handle through a catenoid.

It was a big surprise when Costa found a minimally im-
mersed punctured torus which Hoffman and Meeks proved
to be embedded! The surface is a bit similar to our early
example where two half-catenoids grow out of a plane.
Therefore we first try to imagine a torus with a planar
end. This is a difficult request until one turns it around
and asks for a plane with a handle:
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A plane with a handle is a torus with a planar end.
This surface is a stereographic projection of the Clifford
torus, the projection center is on the surface. All its pa-
rameter lines are circles, except for the two straight lines
which pass through the midpoint of this surface. It is a
torus with one puncture. The torus is the square torus
because it is a) rectangular since the fixed point sets (on
the surface) of the reflections in two vertical planes have
two components and it is b) rhombic because 180◦ rotation
about the straight lines are symmetries whose fixed point
sets have only one component.
The strategy is: puncture the torus in the two points where
the normal to the two straight lines (= the intersection of
the symmetry planes) intersect the surface again and grow
half-catenoids at these points towards the outside (or away
from the straight lines).
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This plan contains enough information to write down the
Weierstrass data of the

Costa Surface.
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We draw the quadratic fundamental domain of our square
torus such that the straight lines on the cyclide surface
become the diagonals. Note that they are also one compo-
nent fixed point sets of orientation reversing involutions.
The pair of horizontal symmetry lines (the parallel bound-
ary segments are identified) are a two component fixed
point set of an involution, and the pair of vertical symme-
try lines also. The points C1, C2 are the punctures for the
half-catenoids. The point P is the (conformal) point at in-
finity of our plane with handle. The center is called S (for
saddle). The normals at S,C1, C2 point in one direction,
the normal at P in the opposite direction. We take these
directions as vertical so that the Gauss map has simple
zeros at S,C1, C2 and therefore a triple pole at P .

This forces the height differ-
ential dh to have simple poles
at C1, C2 to make these points
catenoid punctures. At S we
need to compensate the sim-
ple pole of 1/g with a simple
zero. The remaining other sim-
ple zero would cause a branch
point everywhere except if it

is at P . These zeros and poles determine g up to a fac-
tor a exp(i · α) and dh up to a factor b exp(i · β). Clearly
b only scales the surface and α rotates it. And β is the
associate family parameter, it is chosen to make the pe-
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riods of the catenoid punctures imaginary. Under these
conditions the fixed point sets of the involutions turn out
to be straight lines (the diagonals) and planar geodesics.
This was not at all clear initially, but it follows immedi-
ately from the description of the functions in ’Symmetries
of Elliptic Functions’. With the parameter a we have at
this point the Weierstrass data of a 1-parameter family of
candidates. With an intermediate value argument one can
choose a so that the dotted curve - which is closed on the
torus - also has a closed Weierstrass image in R3.

Weierstrass Data for the Costa Surface:

g(z) = a · (J E · J F )0(z), dh =
dz

J D(z)
.

Up to a multipicative constant the function J E · J F is
the Weierstrass ℘-function (here for the square torus).
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The Conjugate Plateau Construction
Of Triply Periodic Minimal Surfaces

The Weierstrass representation for triply periodic minimal
surfaces is more difficult than what we have explained so
far. A simpler approach is the conjugate Plateau construc-
tion which, as we will see, can loosely be called the soap
film point of view. Without further explanation we use the
fact from complex analysis that the derivative of the imag-
inary part of a function z 7→ f(z) can easily be computed
from the derivative of the real part of f . This fact is known
as the ‘Cauchy-Riemann equations’. It implies that, on a
simply connected domain, the real part of f determines the
imaginary part up to a constant. Of course this holds for
the three components of the Weierstrass integral so that
a simply connected minimal surface piece determines its
conjugate surface up to an R3-constant.

The next step is the soap film part: The Plateau problem
arose from the soap film experiments of the 19th century
physicist Joseph A.F.Plateau. Its solution (1932) by Dou-
glas and Rado states:
Every closed continuous injective curve in R3 is the bound-
ary of at least one simply connected minimal surface.
This theorem expresses a fundamental property of the min-
imal surface equation: It is well suited for boundary value
problems. On the other hand, initial value problems usu-
ally have no solution. In particular, the minimal surface
piece of a Plateau solution usually cannot be extended be-
yond its boundary curve. So, how can it help to get com-
plete solutions without boundary?
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Here symmetries come to the rescue. If the boundary curve
contains a straight line segment then 180◦ rotation of a
Plateau solution around this segment extends the minimal
surface to twice as large a piece. If the boundary curve
is a polygon then extension by 180◦ rotation works for all
segments of the original polygon and all segments of the
rotated polygons. The resulting surfaces usually have sin-
gularities at the vertices of these polygons. However, if all
the angles of the polygon are of the form π/k, k ∈ N, then
repeated rotation about the edges that start at one vertex
p results in a surface for which p is an interior, regular
point. Such contours therefore lead to complete minimal
surfaces without boundary, but usually with lots of self-
intersections. Only a few such minimal surfaces, which are
embedded, are known. An example is the conjugate of the
Schwarz’ P-surface:

All angles of this hexagon are 90◦, the z-axis divides it into
two 90◦-pentagons.
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The next step gives us a wealth of embedded examples.
We consider the conjugates of the just described Plateau
solutions with polygonal boundaries. A surprise happens
to the straight line segments of the boundary which are
symmetry lines on the extended surface with the symme-
try being 180◦-rotation:
The boundary of the conjugate piece consists also of sym-
metry arcs. These arcs are planar geodesics and the ex-
tended surface is reflection symmetric with respect to these
planes.
The strategy of the conjugate Plateau construction is, to
choose the polygonal contour for the Plateau solution in
such a way that the extension of its conjugate piece by
reflection in the planes of the boundary arcs give an em-
bedded minimal surface.
This is helped by two geometric facts:
(i) The Plateau solution very often is a graph over a convex
domain which is bounded by a suitable orthogonal projec-
tion of the boundary polygon. Therefore it is embedded.
Romain Krust proved that in this situation the conjugate
piece is also a graph, hence embedded.
(ii) The boundary polygon determines the angle by which
the normal of the Plateau solution rotates along each bound-
ary segment. The Weierstrass representation shows that
the normal of the conjugate piece rotates along each bound-
ary arc by the same angle.

The Fujimori-Weber surfaces are very good examples for
the described construction. In the Action Menu one can
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select Don’t Show Reflections to see the fundamental
piece. Also in the Action Menu one can switch between a
minimal surface and its conjugate. In the View Menu one
can switch between WireFrame Display, Patch Display,
Point Cloud Display. In WireFrame and in Point Cloud
Display the Action Menu offers Emphasize Boundary, so
that one can easily see the polygonal contour for the Plateau
solution and its conjugate – which is the fundamental piece
of a Fujimori-Weber surface, bounded by planar symmetry
arcs. The following pictures are an ff = 4 example:
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The Plateau contour is a hexagon with four 90◦ and two
60◦ angles. The z-axis divides it into two pentagons. Ob-
serve that the conjugate piece has its normals parallel to
the normals of the Plateau piece – at corresponding points
of course. The third picture is an assembly of twelve such
fundamental domains.

All of our Fujimori-Weber surfaces can be described in the
above way. Note that not only the angles of the hexagon
between adjacent edges are important, but also the fol-
lowing: Let a, b, c be three consecutive edges. The angle
between a plane normal to a and a plane normal to c has to
be either 0 or of the form π/k, k = 2, 3, 4, 6. Otherwise the
group generated by the reflections in the symmetry planes
of the conjugate of the Plateau solution is not discrete and
the extended surface cannot be embedded.

Several of the Fujimori-Weber surfaces agree with other ex-
amples in 3D-XplorMath: ff = 2 is the Schwarz P -surface,
ff = 5 is the Schwarz H-surface, ff = 8 is the A. Schoen
S-S-surface and ff = 7 is the same surface ’inside-out’,
that is, the assembled piece has the other side of the sur-
face as its outside. If a minimal surface carries a straight
line, then the 180◦ symmetry rotation interchanges the
two sides of the surface – therefore there is no geometric
distinction between the two sides. Here this happens if
the pentagon-half of the Plateau hexagon has a reflection
symmetry, as in the cases ff = 2, 5 above. The other cases
come in such ’inside-out’ pairs, which look like different
surfaces, but are not, because the pentagon-halfs of the
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Plateau hexagon are the same polygon. The other pairs
are
ff = 1, 3 (A. Schoen’s H-T–surface),
ff = 4, 6 (A. Schoen’s H-R–surface) and
ff = 9, 10 (A. Schoen’s T -R–surface).

Although the triply periodic surfaces in 3D-XplorMath can
most easily be understood by this conjugate Plateau con-
struction, they are not computed in this way. It is another
story to explain the functions and their domains which are
used in the Weierstrass representation to compute these
surfaces.
In [Ka] a Weierstrass representation for several Plateau
problems as above is derived. Also fifteen 1-parameter
polygonal contours are discussed which give further exam-
ples because the obstructing period problem can be solved
by the intermediate value theorem.
In [FW] the Fujimori-Weber surfaces are obtained with a
non-standard use of the Weierstrass representation. The
collection of examples described in this paper is much larger
than what is shown in 3D-XplorMath.
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