
Lemniscate *

The Lemniscate is a figure-eight curve with a simple me-
chanical construction attributed to Bernoulli: Choose
two ’focal’ points F1, F2 at distance L := 2 ∗ dd, then take
three rods, one of length L, two of length R = L/

√
2.

The short ones can rotate around the focal points and
the long one connects their free ends with rotating joints
(red lines in the figure). This machine has one degree of
freedom and the midpoint of the long rod traces out the
Lemniscate while the short rods rotate (not uniformly).
– This drawing mechanism will also work for arbitrary
lengths 0 < R < L,R := cc. The default morph in 3DXM
varies cc. Another interesting morph is obtained by vary-
ing the position of the drawing pen on the long rod with
ff ∈ (0, 1). Click the Init To Current Parameters but-
ton in Set Morphing, then put f0 := 0, f1 := 1.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Since the Bernoulli Lemniscate is much better known than
curves drawn by mechanisms with parameters different
from L : R =

√
2 : 1, we will give, below, parametriza-

tions and equations only for the Bernoulli curve.
The curves in 3DXM are obtained as follows:
The endpoint of the right rod rotates with constant speed,
i.e. P (t) = (dd + cc · cos(t), cc · sin(t)). The endpoint Q(t)
of the left rod is obtained by intersecting two circles (of ra-
dius R around F1 and radius L around P (t)). One of the
intersection points is P 0(t) = (−dd+ cc · cos(t), cc · sin(t)),
since |F2 − F1| = |P (t) − P 0(t)| = L = 2 · dd. Therefore
Q(t) is obtained by reflecting P 0(t) in the Diagonal F1P (t)
of the parallelogram F2, F1, P 0(t), P (t).
The drawing pen is at ff · P (t) + (1− ff) · Q(t).

Mechanical constructions of curves give rise to simple tan-
gent constructions. We imagine that a plane is attached
to the long rod. Then every point of this plane traces out
a curve when the rods move. The velocity vectors of these
traced curves give, at each moment, a vectorfield, that has
concentric circles as integral curves (or, exceptionally, par-
allel lines). The centers of these concentric circles are the
momentary centers of rotation for the moving plane. If we
join a point of a traced curve to the corresponding mo-
mentary center of rotation, then this radius (drawn blue)
is orthogonal to the tangent (also blue).

How can one find the momentary center of rotation for
the current drawing machine? The endpoints of the two
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short rods are points of the moving plane. We know that
each can only move orthogonally to its rod (namely rotate
around the other endpoint, a focal point). This says that
both short rods point to the momentary center of rotation,
which therefore is obtained as the intersection of two lines
(drawn green in the figure).
Compare the other mechanically constructed curves.

Parametrizations are not unique, here is a well known one:
x(t) := cos(t)/(1 + sin(t)2)
y(t) := sin(t) · cos(t)/(1 + sin(t)2).

The Bernoulli Lemniscate has this implicit equation:

(x2 + y2)2 = x2 − y2.
Divide this by r2 := x2 + y2 to get the polar form:

r2 = cos(φ)2 − sin(φ)2.
The points F1, F2 := ±1/

√
2 are called Focal points of the

Lemniscate because of the special property:
|P − F1| · |P − F2| = |F1 − F2|2/4.

If one takes the complex square root of a circle which
touches the y-axis from the right at 0 then one also obtains
(half of) a Lemniscate. In the Conformal Category, choose
z →

√
z, and then in the Action Menu, select Choose Cir-

cle by Mouse, and create a circle that is tangent to the
y-axis at 0.

The inversion map: (x, y) 7→ (x, y)/(x2 + y2) often trans-
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forms some interesting curve into another interesting curve.
And indeed, the Lemniscate, with the above parametriza-
tion, is transformed by inversion into the curve

x = 1/ cos(t), y = sin(t)/ cos(t).
Observe the implicit equation x2 − y2 = 1. It shows
that the new curve is a hyperbola with orthogonal asymp-
totes. So we could have obtained the Bernoulli Lemnis-
cate from the orthogonal hyperbola by inversion in a cir-
cle around its midpoint. – More generally, inversions of
hyperbolae x2/a2 − y2/b2 = const give figure 8 curves
with non-orthogonal double tangents. The angle 2α be-
tween the double tangents is the same as the angle be-
tween the asymptotes and satisfies tanα = b/a. The an-
gle 2β between the double tangents of the figure 8 curves
of our drawing mechanisms satisfies sinβ = R/L. Set
a := R, b := a/

p
L2/R2 − 1 to obtain α = β. Invert, with

~x 7→ ~x · a2/|~x|2, the lemniscate and put the result into the
term x2/a2− y2/b2 to find that it is 1. This gives implicit
lemniscate equations: x2/a2 − y2/b2 = (x2 + y2)2/a4.
And, invert hyperbola parametrizations, e.g. x = a/ cos(t),
y = b sin(t)/ cos(t), to parametrize lemniscates.
We note that not every figure 8 curve (with orthogonal
double tangents) is a Bernoulli Lemniscate. Another figure-
eight is obtained by the simpler parametrization:

x(t) := cos(t), y(t) := sin(t) · cos(t),
which has the implicit equation y2 = x2(1− x2).
H.K.
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