
The Mandelbrot Set And Its Julia Sets ∗

If one wants to study iterations of functions or map-
pings, f◦n = f ◦ · · · ◦ f , as n becomes arbitrarily large
then Julia sets are an important tool. They show up
as the boundaries of those sets of points p whose it-
eration sequences f◦n(p) converge to a selected fixed
point pf = f (pf ). One of the best studied cases is the
study of iterations in the complex plane given by the
family of quadratic maps

z → fc(z) := z2 − c.
The Mandelbrot set will be defined as a set of pa-
rameter values c. It provides us with some classifica-
tion of the different ‘dynamical’ behaviour of the func-
tions fc in the following sense: If one chooses a c-value
from some specific part of the Mandelbrot set then
one can predict rather well how the iteration sequences
zn+1 := fc(zn) behave.

1) Infinity is always an attractor. Or, more
precisely, for each parameter value c we can define a
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Radius Rc ≥ 1 such that for |z| > Rc the iteration
sequences f◦n(z) converge to infinity. Proof: The tri-
angle inequality shows that |fc(z)| ≥ |z|2−|c| and then
|fc(z)| > |z| is certainly true if |z2| − |c| > |z|. There-
fore it is sufficient to define Rc := 1/2 +

√
1/4 + |c|,

which is the positive solution of R2 −R− |c| = 0.
This implies: if we start the iteration with z1 > Rc then
the absolute values |zn| increase monotonically—and
indeed faster and faster to infinity. Moreover, any start-
ing value z1 whose iteration sequence converges to in-
finity will end up after finitely many iterations in this
neighborhood of infinity, U∞ := {z ∈ C | |z| > Rc}.
The set of all points whose iteration sequence converges
to infinity is therefore an open set, called the attractor
basin A∞(c) of infinity.

2) Definition of the Julia set Jc. On the other
hand, the attractor basin of infinity is never all of C,
since fc has fixed points zf = 1/2±

√
1/4 + c (and also

points of period n, that satisfy a polynomial equation
of degree 2n, namely f◦n(z) = z).
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Definition. The nonempty, compact boundary of the
attractor basin of infinity is called the Julia set of fc,

Jc := ∂A∞(c).

Example. If c = 0 then the exterior of the unit cir-
cle is the attractor basin of infinity, its boundary, the
unit circle, is the Julia set J0. The open unit disk
is the attractor basin of the fixed point 0 of fc. The
other fixed point 1 lies on the Julia set; 1 is an expand-
ing fixed point since f ′c(1) = 2; its iterated preimages
−1,±i, . . . all lie on the Julia set.

Qualitatively this picture persists for parameter values
c near 0 because the smaller fixed point remains attrac-
tive. However, the Julia set immediately stops being a
smooth curve—it becomes a continuous curve that os-
cillates so wildly that no segment of it has finite length.
Its image is one of those sets called a fractal for which
a fractional dimension between 1 and 2 can be defined.
Our rainbow coloration is intended to show Jc as a
continuously parametrized curve. We next take a more
carefull look at attractive fixed points.
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3) c-values for which one fixed point of fc is
attractive.

There is a simple criterion for this: if the derivative at
the fixed point satisfies |f ′c(zf )| = |2zf | < 1 then zf
is a linearly attractive fixed point; if |2zf | > 1 then
zf is an expanding fixed point; if the derivative has
absolute value 1 then no general statement is true (but
interesting phenomena occur for special values of the
derivative).

Since the sum of the two fixed points is 1, the derivative
f ′c can have absolute value < 1 at most at one of them.
Let wc be that square root of 1 + 4c having a positive
real part. Then |1− wc| is the smaller of the absolute
values (of the derivatives of fc at the fixed points). The
set of parameter values c with a (linearly) attractive
fixed point of fc is therefore the set {c | |1−wc| < 1},
or {c = (w2 − 1)/4 | |1 − w| < 1}. In other words,
the numbers 1 + 4c are the squares of numbers w that
lie in a disk of radius one with 0 on its boundary. The
apple shaped boundary is therefore the square of a circle
through 0. It is called a cardioid.
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4) The definition of the Mandelbrot set in
the parameter plane.

The behavior of the iteration sequence zn+1 := fc(zn)
in the z-plane depends strongly on the value of the
parameter c. It turns out that for those c satisfying
|c| > Rc, the set of points z whose iteration sequences
do not converge to infinity has area = 0. Such points
are too rare to be found by trial and error, but one can
still compute many as iterated preimages of an unstable
fixed point. It follows from |c| > Rc that only the
points of the Julia set Jc do not converge to infinity.
Moreover, the Julia set is no longer a curve, but is a
totally disconnected set: no two points of the Julia set
can be joined by a curve inside the Julia set. (In this
case our coloration of Jc has no significance.)

The Mandelbrot set is defined by the opposite behaviour
of the Julia sets:

Mandelbrot Set : M := {c | Jc is a connected set}
There is an 80 year old theorem by Julia or Fatou that
says:
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M = {c ; f◦nc (0) stays bounded}
= {c ; |f◦nc (0)| < Rc for all n}.

This provides us with an algorithm for determining the
complement of M; namely c 6∈ M if and only if the
iteration sequence {f◦nc (0)} reaches an absolute value
> Rc for some positive integer n. (But, the closer c is
to M, the larger this termination number n becomes).
On the other hand, if fc has an attractive fixed point,
then it is also known that {f◦nc (0)} converges towards
that fixed point. The interior of the cardioid described
above is therefore part of the Mandelbrot set, and in
fact it is a large part of it.
As experiments we suggest to choose c-values from the
apple-shaped belly of the Mandelbrot set and observe
how the Julia sets deform as c varies from 0 to the
cardioid boundary. For an actual animation, choose
the deformation interval with the mouse (Action Menu)
and then select ‘Morph’ in the Animation Menu. To
see how the derivative at the fixed point controls the
iteration near the fixed point, choose ‘Iterate Forward’
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(Action Menu) and watch how chosen points converge
to the fixed point. This is very different for c from
different parts of the Mandelbrot belly.

5) Attractive periodic orbits. As introduction
let us determine the orbits of period 2, i.e., the fixed
points of fc ◦ fc that are not also fixed points of fc.
Observe that:

fc ◦ fc(z)− z = z4 − 2cz2 − z + c2 − c
= (z2 − z − c)(z2 + z − c + 1).

The roots of the first quadratic factor are the fixed
points of fc, the roots of the other quadratic factor are
a pair of points that are not fixed points of fc, but are
fixed points of fc◦fc, which means, they are an orbit of
period 2, clearly the only one. Such an orbit is (linearly)
attractive if the product of the derivatives at the points
of the orbit has absolute value < 1. The constant co-
efficient in the quadratic equation is the product of its
roots, i.e. the product of the points of period 2 is 1− c.
Therefore: The set of c-values for which the orbit of

period 2 is attractive is the disk {c ; |1− c| < 1/4}.
Again, this disk is part of the Mandelbrot set since
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{f◦nc (0)} has the two points of period 2 as its only
limit points.
The interior of the Mandelbrot set has only two com-
ponents that are explicitly computable. These are the
c-values giving attractive fixed points or attractive or-
bits of period 2. For example, the points of period 3
are the zeros of a polynomial of degree 6, namely:(

fc ◦ fc ◦ fc(z)− z
)
/(z2 − z − c)

= z6 + z5 + (1− 3c)z4 + (1− 2c)z3 +

+(1− 3c + 3c2)z2 + (c− 1)2z + 1− c(c− 1)2.

But since this polynomial cannot be factored (with
c a parameter) into two polynomials of degree 3 it
does not provide us with a description of the attrac-
tive orbits of period 3. However, it does give those
c-values for which the period 3 orbits are superattrac-
tive (i.e. (f◦3)′(orbit point) = 0), since in this case the
constant term must vanish. Approximate solutions of
1−c(c−1)2 = 0 are c = 1.7549, c = 0.12256±0.74486i.
One can navigate the Mandelbrot set and observe that
the complex solutions are between the two biggest blobs
that touch the primary apple from either side.
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Linearly attractive orbits always have c-values which
belong to open subsets of the Mandelbrot set (in par-
ticular all the blobs touching the two explicit compo-
nents), but the closure of these open subsets does not
exhaust the Mandelbrot set. For example for c = i the
orbit of 0 is 0 7→ −i 7→ −1− i 7→ i 7→ −1− i . . . , i.e.,
after two preliminary steps it reaches an orbit of pe-
riod 2. Since this orbit stays clearly bounded we have
i ∈M (by the criterium quoted before). On the other
hand, if the iteration z 7→ z2− i had any attractor (be-
sides ∞), then the orbit of 0 would have to converge
to the attracting orbit. Therefore there is no attractor
and no attractor basin. In fact, the complement of the
Julia set is the (simply connected) attractor basin of
∞. Because of its appearance, this Julia set is called a
dendrite.
To generalize this observation, consider, for any c, the
orbit of 0: 0 7→ −c 7→ c2 − c 7→ c4 − 2c3 + c2 − c 7→
(c4 − 2c3 + c2 − c)2 − c 7→ . . . . If 0 is on a periodic
orbit for some c, then this orbit is superattractive. If
the periodicity starts later then this periodic orbit may
not be an attractor even though the orbit of 0 reaches
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it in finitely many steps. For example c2− c is periodic
of period 3, if c3 · (c − 2) · (c3 − 2c2 + c − 1)2 · (c6 −
2c5 + 2c4− 2c3 + c2 + 1) = 0; c = 2 is the largest point
on the Mandelbrot set, the third factor has as roots the
three c-values (mentioned before) for which the itera-
tion has superattractive orbits of period 3. The last
factor has the root c = 1.239225555 + 0.4126021816 · i,
its Julia set is another dendrite. A third dendrite is
obtained, for example, if the 4th point c4− 2c3 + c2− c
in the orbit of 0 is a fixed point, which is the case
if c4(c − 2)(c3 − 2c2 + 2c2 − 2) = 0; here the last
factor has the numerical solutions c = 1.543689 and
c = 0.2281555± 1.1151425 · i.
6) Suggestions for experiments. The final entry
in the Action Menu for the Julia set fractal is a hier-
achical menu with five submenus, each of which lists a
number of related c-values that you may select. The c-
values in these menus were selected because they typify
either some special topological property of the associ-
ated Julia set or some dynamical property of the itera-
tion dynamics of z 7→ z2 − c, and these properties are
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referenced by special abbreviations added to the menu
item. (In addition some menu items also list a “name”
that is in common use to refer to the Julia set, usually
deriving from its shape). For convenience we will list
in the next couple of pages all the items from these five
menus, but first we explain the abbreviations used to
describe them.

Abbreviations used in the following lists of inter-
esting C-values. ‘FP’ means ‘fixed point’, the corre-
sponding c-values are from the belly of the Mandelbrot
set. ‘cyc k’ means ‘cyclic of period k’, the correspond-
ing c-values are from the blobs directly attached to the
belly; its Julia sets have a fixed point which is a com-
mon boundary point of k components of the attractor
basin and the attractive orbit wanders cyclicly through
these k components. ‘per 2 · 3’ means: this c-value
has an attractor of period 6 and the c-value is from a
blob which is attached to the disk in M (which gives
the attractive orbits of period 2). By contrast, ‘per
3 · 2’ means that the c-value is from the biggest blob
which is attached to a period-3 blob (attached to the
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belly); its attractor has also period 6, but the open sets
through which the attractive orbit travels are arranged
quite differently in the two cases. One should compare
both of them with the cyclic attractors of period 2 resp.
3. The abbreviation ‘tch 1-2’ means that the c-value is
in the Mandelbrot set a common boundary point be-
tween the belly (i.e. the component of attractive fixed
points) and the component of attractors of period 2.
For the ‘Siegel disks’ see Nr. 8 of this ATO first; the
column entry in the list gives the rotation number of
the derivative (of the iteration map) at the fixed point.
In the dendrite section of the list we mean by ‘ev per
2’ that the orbit of 0 is ‘eventually periodic with period
2’, as explained in Nr5 of this ATO. Finally, if c 6∈M
then the Julia set is a totally disconnected Cantor set
and there are no such easy distinctions between differ-
ent kinds of behaviour of the iteration on the Julia set
(all other points are iterated to ∞).
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Interesting C-values From the Action Submenus.
C−values Popular Name Behaviour

Attractors Menu.

0.0 + 0.0 ·i Circle FP

0.0 + 0.1 ·i Rough Circle FP

0.127 + 0.6435 ·i Near-Rabbit FP

−0.353 − 0.1025 ·i Near-Dragon FP

0.7455 + 0.0 ·i Near San Marco FP

1.0 + 0.0 ·i cyc 2

1.0 + 0.2 ·i cyc 2

0.1227 + 0.7545 ·i Rabbit cyc 3

1.756 + 0.0 ·i Airplane cyc 3

−0.2818 + 0.5341 ·i cyc 4

1.3136 + 0.0 ·i per 2 · 2
−0.3795 + 0.3386 ·i cyc 5

0.5045 + 0.5659 ·i cyc 5

−0.3909 + 0.2159 ·i cyc 6

0.1136 + 0.8636 ·i per 3 · 2
1.1409 + 0.2409 ·i Rabbit’s Shadow per 2 · 3
−0.3773 + 0.1455 ·i cyc 7

−0.1205 + 0.6114 ·i cyc 7

−0.36 − 0.1 ·i Dragon cyc 8

0.3614 + 0.6182 ·i cyc 8

−0.3273 + 0.5659 ·i per 4 · 2
1.0 + 0.2659 ·i per 2 · 4

1.3795 + 0.0 ·i per 2 · 2 · 2
0.0318 + 0.7932 ·i Rabbit Triplets per 3 · 3
−0.0500 + 0.6318 ·i cyc 10

−0.4068 + 0.3409 ·i per 5 · 2
0.5341 + 0.6023 ·i per 5 · 2
0.9205 + 0.2477 ·i per 2 · 5
1.2114 + 0.1545 ·i per 2 · 5
0.6977 + 0.2818 ·i cyc 11

0.4864 + 0.6023 ·i Quintuple Rabbits per 5 · 3
0.65842566307252 − 0.44980525145595 ·i SuperAttractor per 21
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Interesting C-values From the Action Submenus.

C−values Popular Name Behaviour

Between Attractors Menu.

0.75 + 0.0 ·i San Marco tch 1-2

1.25 + 0.0 ·i San Marco’s Shadow tch 2-2·2
0.125 + 0.64952 ·i Balloon Rabbit tch 1-3

−0.35676 + 0.32858 ·i tch 1-5

Siegel Disks Menu.

0.390540870218 + 0.586787907347 ·i 2π · i · gold

−0.08142637539 + 0.61027336571 ·i 2π · i/
√

2

0.66973645476 − 0.316746426417 ·i 2π · i/
√

5

One Simply Connected Open Component Menu.

0.0 + 1.0 ·i Dendrite ev per 2

0.2281554936539 + 1.1151425080399 ·i Dendrite FP[after 3]

1.2392255553895 − 0.4126021816020 ·i Dendrite ev per 3

−0.4245127190500 − 0.2075302281667 ·i FP after 7

1.1623415998840 + 0.2923689338965 ·i per 2 after 7

Outside Mandelbrot set Menu.

0.765 + 0.12 ·i Cantor set

−0.4 − 0.25 ·i Cantor set

−0.4253 − 0.2078 ·i Cantor set
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An experiment which one should always make after one
has computed a Julia set for some c from the Mandel-
brot set: Remember from which part of M c came and
then ‘Iterate Forward’ (Action Menu) mouse selected
points until they visually converge to a periodic attrac-
tor. Observe how the shape of the Julia set lets one
guess the period of its attractor and how this relates to
the position of c in M.

7) Computation of the Julia set. In addition to
the attractor at infinity there is at most one further at-
tractor in the z → (z2 − c) systems. All preimages
of non-attractive fixed points or non-attractive peri-
odic orbits are points on the Julia set. Since |f ′c| > 1
along the Julia set (with some exceptions), the preim-
age computation is numerically stable. This is a com-
mon method for computing Julia sets.
In our program we compute preimages starting from
the circle {z; |z| = Rc} around the wanted Julia set.
Under inverse images these curves converge from out-
side to the Julia set. Such an approximation by curves
allows us to color the Julia set in a continuous way
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and thus emphasize that, despite its wild looks it is
the image of a continuous curve—at least for c ∈ M ,
otherwise we recall that the Julia set is totally discon-
nected, so in particular is not the image of a curve. Our
computation works also for c 6∈ M, since our ‘curves’
of course consist of only finitely many points, and the
inverse images of each of these points have their limit
points on the Julia set.

8) Self-similarity of a Julia set. A well adver-
tised property of these Julia sets is their so called ‘self-
similarity’. By this one means: Take a small piece of the
Julia set and enlarge it; the result looks very much like
a larger piece of that same Julia set. For the Julia sets
of the present quadratic iterations, this self-similarity
is easily understood from the definitions: The iteration
map fc is a conformal map that stretches its Julia set
1:2 onto itsself. In other words, the iteration map itself
maps any small piece of its Julia set to roughly twice as
large a piece, and it does so in an angle preserving way.
From this point of view self-similarity should come as
no surprise.
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9) Siegel Disks. We next would like to explain an ex-
perimentally observable phenomenon that mathemati-
cians find truly surprising, but this needs a little prepa-
ration.
Simplifying Mappings. Imagine that we want to de-
scribe something on the surface of the earth, for exam-
ple a walk. For a long time, people have been more com-
fortable giving the description on a map of the earth
rather than on the earth itself. Mathematicians view a
map of the earth more precisely as a mapping F from
the earth to a piece of paper and they describe (or
even prove) properties of the map by properties of the
mapping F . An example of a useful property is ‘con-
formality’: angles between curves on the earth are the
same as the angles between the corresponding curves
on the map.
Conjugation by simplifying mappings. Let us con-
sider one of the above iteration maps fc and assume
that it has an attractive fixed point zf with derivative

q := f ′c(zf ), |q| < 1. The simplest map with the same
derivative is the linear map L(z) := q · z. It is the def-
inition of derivative that the behaviour of fc near the

17



fixed point looks ‘almost’ like the behaviour of L near
its fixed point 0, and ‘almost’ means: the smaller the
neighborhoods of the fixed points (on which the maps
are compared) the more the maps look alike. But more
is true for fc because of the assumption |q| < 1, we have
the theorem: There exists on a fixed(!) neighborhood
of the fixed point zf a simplifying map F to a neighbor-
hood of 0 ∈ C that makes fc look exactly like its linear
approximation L, by which we mean: fc = F−1◦L◦F .
In particular, this tells us everything about the itera-
tions of fc in terms of the iterations of L because they
also look the same when compared using (‘conjugation’
by) F : f◦nc = F−1 ◦ L◦n ◦ F .
Siegel’s Theorem. The previous result cannot be true
in general if |q| = 1. For example if q = exp(2πi/k),
then L◦k = id, but f◦kc =/ id. Therefore they cannot
look alike under a simplifying (i.e., ‘conjugating’) map-
ping F . But if z → q · z is an irrational rotation and if
some further condition is satisfied, for example if q :=
exp(2πi/

√
2), then there is again such a simplifying

mapping F such that fc looks near that fixed point ex-
actly like its linearization, namely: fc = F−1◦L◦F .
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Experiment. While Siegel’s proof insures only very
small neighborhoods on which the simplifying mapping
F exists, these neighborhoods are surprisingly large in
the present case. One can ‘observe’ Siegel’s theorem by
first choosing c = ((1−q)2−1)/4 such that f ′c(zf ) = q
with q = exp(2πi · k/√p), p prime (or square free),
then one chooses points on a fairly straight radial curve
from the fixed point almost out to the Julia set. Under
repeated iterations these points travel on closed curves
around the fixed point (’circles’ when viewed with F )
and all of them travel with the same angular velocity,
i.e., one observes that they remain on non-intersecting
radial curves.

H.K.
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